Diagnostic-robust Statistical Analysis for Local Surface Fitting in 3d Point Cloud Data
نویسندگان
چکیده
This paper investigates the problem of local surface reconstruction and best fitting for planar surfaces from unorganized 3D point cloud data. Least Squares (LS), its equivalent Principal Component Analysis (PCA) and RANSAC are the three most popular techniques for fitting planar surfaces to 3D data. LS and PCA are sensitive to outliers and do not give reliable and robust parameter estimation. The RANSAC algorithm is robust but it is not completely free from the effect of outliers and is slow for large datasets. In this paper, we propose a diagnostic-robust statistical algorithm that uses both diagnostics and robust approaches in combination for fitting planar surfaces in the presence of outliers. Recently introduced high breakdown and fast Minimum Covariance Determinant (MCD) based location and scatter estimates are used for robust distance to identify outliers and a MCD based robust PCA approach is used as an outlier resistant technique for plane fitting. The benefits of the new diagnostic-robust algorithm are demonstrated with artificial and real laser scanning point cloud datasets. Results show that the proposed method is significantly better and more efficient than the other three methods for planar surface fitting. This method also has great potential for robust local normal estimation and for other surface shape fitting applications. * Corresponding author.
منابع مشابه
A novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملOutlier detection and robust normal-curvature estimation in mobile laser scanning 3D point cloud data
This paper proposes two robust statistical techniques for outlier detection and robust saliency features, such as surface normal and curvature, estimation in laser scanning 3D point cloud data. One is based on a robust z-score and the other uses a Mahalanobis type robust distance. The methods couple the ideas of point to plane orthogonal distance and local surface point consistency to get Maxim...
متن کاملRobust methods for feature extraction from mobile laser scanning 3D point clouds
Three dimensional point cloud data obtained from mobile laser scanning systems commonly contain outliers. In the presence of outliers most of the currently used methods such as principal component analysis for point cloud processing and feature extraction produce inaccurate and unreliable results. This paper investigates the problems of outliers, and explores advantages of recently introduced s...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کامل